Solutions to JEE Advanced Home Practice Test -3 | JEE 2024 | Paper-2

PHYSICS

1.(AC) Minima will be form at O.

If
$$SS_1 + S_1O - SS_2 - S_2O = \frac{n\lambda}{2}$$
, $n = 1, 3, 5, \dots$

For minima value of d, n = 1

$$\therefore \frac{\lambda}{4} = \sqrt{1 + d^2} - 1$$

$$(1+d^2)^{1/2}-1=\frac{\lambda}{4}$$

$$1 + \frac{d^2}{2} - 1 = \frac{\lambda}{4}$$
 (Neglecting smaller terms)

$$d = \pm \sqrt{\frac{\lambda}{2}}, \ \beta = \frac{d\lambda}{D} = \sqrt{2\lambda}$$

2.(BC) Wavelength of incident photon is

$$\lambda = \frac{12431}{5.4852} = 2266.28 \,\text{Å}$$

Photon momentum is $P = \frac{h}{\lambda}$

By conservation of energy we use

$$\Delta E = \frac{1}{2} m_e v_1^2 + \frac{1}{2} m_{Li} v_2^2 \dots (i)$$

By conservation of momentum we use

$$m_e v_1 = m_{I_i} v_2 \sin \theta$$
(ii)

And
$$\frac{h}{\lambda} = m_{Li} v_2 \cos \theta$$
(iii)

Squaring adding (ii) and (iii) we get

$$m_e^2 v_1^2 + \frac{h^2}{\lambda^2} = m_{Li}^2 v_2^2$$

$$\frac{1}{2}m_e v_1^2 = \frac{1}{2m_e} \left(m_{Li}^2 v_2^2 - \frac{h^2}{\lambda^2} \right)$$

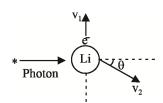
From equation (i) we use

$$\Delta E = \frac{m_{Li}^2}{2m_e} v_2^2 - \frac{h^2}{2m_e \lambda^2} + \frac{1}{2} m_{Li} v_2^2$$

$$v_{2} = \sqrt{\frac{\Delta E + \frac{h^{2}}{2m_{e}\lambda^{2}}}{\frac{m_{Li}}{2}\left(\frac{m_{Li}}{me} + 1\right)}} = 14.2 \, m \, / \, s$$

From equation (iii) we use

$$\cos \theta = \frac{h}{\lambda m_{Li} v_2} = 0.0178; \qquad \theta = 88.9^{\circ}$$



3.(BD) First of all the gas is compressed isothermally. Using Boyle's law

$$P_1V_1 = P_2V_2$$

Or
$$P_2 = (P_1 V_1 / V_2)$$

Here $P_1 = 75 \, cm$ of mercury and $V_2 = \frac{3}{4} V_1$

Thus
$$P_2 = \frac{75V_1}{(3/4)V_1} = 100 \, cm$$
 of mercury.

The gas is now expanded adiabatically to 20% greater of its original value. Under adiabatic changes the pressure and volume of gas are related as

$$P_2V_2^{\gamma} = P_3V_3^{\gamma}$$

Or
$$P_3 = P_2 \left(\frac{V_2}{V_3}\right)^{\gamma}$$

Here
$$V_2 = \frac{3}{4}V_1$$
 and $V_3 = \frac{120}{100}V_1$

Thus
$$P_3 = 100 \times \left(\frac{3V_1}{4}\right)^{1.5} \times \left(\frac{100}{120V_1}\right)^{1.5}$$

$$=100 \times \left(\frac{3}{4}\right)^{1.5} \times \left(\frac{5}{6}\right)^{1.5} = 100 \times \left(\frac{5}{8}\right)^{1.5} = 100 \times 0.494 = 49.4 \text{ cm of mercury.}$$

Let the final temperature after adiabatic change be T_3 then from the relation of temperature and volume in an adiabatic process, we have

Now
$$T_2V_2^{\gamma-1} = T_3V_3^{\gamma-1}$$

$$T_2 = 17^{\circ}C = 273 + 17 = 290 K$$

Now
$$T_3 = T_2 \left(\frac{V_2}{V_3}\right)^{\gamma - 1} = 290 \times \left(\frac{3V_1}{4}\right)^{1.5 - 1} \times \left(\frac{100}{120V_1}\right)^{1.5 - 1} = 290 \times \left(\frac{5}{8}\right)^{0.5} = 229.3K$$

Hence the final temperature will be -43.7°C

4.(AD)
$$x = \frac{M.L.}{3M + M} = \frac{L}{4}$$

From conservation of angular momentum about COM.

$$Mv_0\left(\frac{3L}{4}\right) = I\omega$$

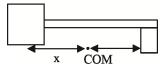
$$I = 3M\left(\frac{L}{4}\right)^{2} + M\left(\frac{3L}{4}\right)^{2} = \frac{3ML^{2}}{16} + \frac{9ML^{2}}{16} = \frac{3}{4}ML^{2}$$

$$\frac{3Mv_0L}{4} = \frac{3}{4}ML^2\omega; \qquad \omega = \frac{v_0}{L}$$

From cons. of linear momentum

$$Mv_0 = 4M.v_c; \ v_c = \frac{v_0}{4}$$

Velocity of 3M =
$$v_c - \frac{L}{4}\omega = \frac{v_0}{4} - \frac{L}{4} \times \frac{v_0}{L} = 0$$



5.(BD)
$$U_i = 0$$

$$U_f = \frac{2KP_1P_2}{\left[2l\sin\frac{\alpha}{2}\right]^3} + mgh \dots (i)$$

Now; form $\triangle AOB$

$$\alpha + 90 - \theta + 90 - \theta = 180$$

$$\alpha = 2\theta$$

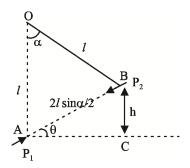
$$\Delta ABC$$
: $h = 2l\sin\left(\frac{\alpha}{2}\right)\sin\theta$

$$h = 2l\sin^2\left(\frac{\alpha}{2}\right);$$
 $\frac{Mg}{\sin\left(90 + \frac{\alpha}{2}\right)} = \frac{Fe}{\sin\left(180 - 2\theta\right)}$

$$Fe = 2mg \sin\left(\frac{\alpha}{2}\right); \quad \frac{6KP_1P_2}{\left(2l\sin\frac{\alpha}{2}\right)^4} = mg 2\sin\left(\frac{\alpha}{2}\right)$$

$$\frac{KP_1P_2}{\left(2l\sin\frac{\alpha}{2}\right)^3} = \frac{mg}{3}\sin\left(\frac{\alpha}{2}\right) \times \left(2l\sin\frac{\alpha}{2}\right) = \frac{mgh}{3}$$

$$U_f = \frac{2}{3}mgh + mgh = \frac{5}{3}mgh$$



- **6.(AD)** The rate of collision of the molecules with per square meter of the wall is $(1/6)n_0v$ where n_0 is the molecular density and v is RMS speed of molecules and pressure exerted by the gas on wall is given by $\left(\frac{1}{6}\right)n_0v\times 2m'v$ where m' is the mass of each molecule.
- **7.(AD)** For lens L_1 , ray must move parallel to the axis after refraction $\frac{\mu_1}{\infty} + \frac{\mu_w}{X} = \frac{\mu_1 \mu_w}{R_1} \Rightarrow x = 10 \, cm$

For lens L_2 , image must form at centre of curvature of the curved surface after refraction through plane part.

$$\frac{\mu_2}{-R_2} + \frac{\mu_{\omega}}{x'} = 0; x' = 8cm$$

8.(BC) Spring force
$$F_s = k \left(\frac{R}{4} \right) = \frac{mg}{4}$$

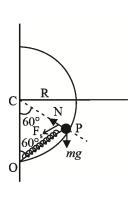
Equation of motion in tangential direction is

$$mg\cos 30^\circ + \frac{mg}{4}\cos 30^\circ = ma$$

$$mg\left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{8}\right) = ma;$$
 $a = \frac{5\sqrt{3}g}{8} = \frac{25\sqrt{3}}{4} m/s^2$

Along radial direction

$$N + \frac{mg}{4}\sin 30^\circ = mg\sin 30^\circ; \ N = \frac{mg}{2} - \frac{mg}{8} = \frac{3mg}{8} = \frac{30}{8} = 3.75N$$



9.(8.4) EMF developed across the rod =
$$\int_{1}^{4} \frac{\mu_0 i}{2\pi r} dr v = \frac{\mu_0 i v}{2\pi} \ln 4 = \frac{\mu_0 i v}{\pi} \ln 2$$

From given value,
$$E = \frac{4\pi \times 10^{-7} \times 2 \times 3 \times 0.7}{\pi} = 24 \times 7 \times 10^{-8}$$

$$i_{\text{max}} = \frac{E}{R} = \frac{24 \times 7 \times 10^{-8}}{1.4} = 1.2 \times 10^{-6} A$$

$$Q_{\text{max}} = C_0 E = 24 \times 7 \times 10^{-8} \times 5 \times 10^{-6} = 8.4 \times 10^{-12} C$$

10.(0.81-0.82).

Energy of daughter nuclei in two cases of α -emission are $E_{D_1} = \frac{4}{206} \times E_{\alpha_1} = \frac{4}{206} \times 5.3 \, MeV$

$$E_{D_1} = 0.1029 \, MeV$$

$$E_{D_2} = \frac{4}{206} \times E_{\alpha_2} = \frac{4}{206} \times 4.5 \, MeV$$

$$E_{D_2} = 0.0873 \, MeV$$

Thus total energy released in first case reaction is

$$E_T = E_{D_1} + E_{\alpha_1} = 5.3 + 0.1029 MeV = 5.4029 MeV$$

In second case when γ – photon is released, we use

$$E_T = E_{D_1} + E_{\alpha_1} = E_{D_2} + E_{\alpha_2} + E_{\gamma}$$

$$E_{\gamma} = E_T - E_{D_2} - E_{\alpha_2} = 5.40 - 4.50 - 0.09 = 0.81 MeV$$

11.(100) As 30% light is incident and reflected by mirror, force due to reflection of light on mirror is

$$F = 2 \times \frac{0.3P}{c} = \frac{0.6P}{c}$$

To support the weight of mirror, we use

$$\frac{0.6P}{c} = mg; \quad P = \frac{mgc}{0.6} = \frac{20 \times 10^{-3} \times 10 \times 3 \times 10^{8}}{0.6}$$

$$P = 10^8$$
 watt; $P = 100 \times 10^6 W = 100 MW$

12. (0.60 - 0.63)

Let us consider the critical angle for face AC be θ_c by snell's law

$$\sin \theta_c = \left(\frac{n_1}{n}\right)$$

From figure.

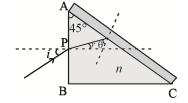
$$r + \theta_c = 45^\circ$$
; $r = 45^\circ - \theta_c$

For refraction at 'p'

 $1 \times \sin i = n \sin r$

$$\sin i = n \sin \left[45^{\circ} - \theta_c \right] = n \sin \left[45^{\circ} - \sin^{-1} \left(\frac{n_1}{n} \right) \right]$$

$$= n \sin \left[45^{\circ} - \sin^{-1} \left(\frac{1.2}{2.4} \right) \right] = n \sin \left[45^{\circ} - 30^{\circ} \right] = n \sin 15^{\circ} = 2.4 \sin 15^{\circ} = 2.4 \times 0.258 \; ; \; \sin i = 0.62$$



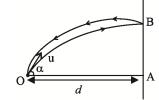
Vidyamandir Classes: Innovating For Your Success

13.(2) The only vertical force on the ball is mg throughout its motion because during impact it experiences a horizontal force from the wall. We can use

$$u_y t - \frac{1}{2}gt^2 = s_y$$

Let *t* be the total time of flight.

$$\therefore O = u \sin \alpha t - \frac{1}{2}gt^2; \qquad t = \frac{2u \sin \alpha}{g}$$



Due to impact with the wall at B, the normal component (i.e., horizontal component) of velocity is reversed and become e times.

Horizontal velocity before impact = $u \cos \alpha$

And horizontal velocity after impact = $eu \cos \alpha$

Time taken to reach the wall,
$$t_1 = \frac{d}{u \cos \alpha}$$

And time taken to come back to O from B.

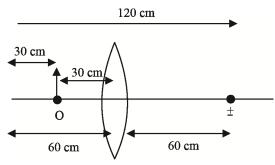
$$t_2 = \frac{d}{u \cos \alpha} + \frac{d}{eu \cos \alpha} = \frac{2u \sin \alpha}{g} \Rightarrow u^2 \sin 2\alpha = gd \left[1 + \frac{1}{e} \right]$$

As $\sin 2\alpha \le 1$,

$$\frac{gd}{u^2} \left[1 + \frac{1}{e} \right] \le 1 \Rightarrow d \le \frac{eu^2}{g(1+e)}$$

$$d \le \frac{2eu^2}{g(2+2e)}; \qquad x=2$$

14.(1.11)



Least count of scale of optical bench = $\frac{1 cm}{5}$ = 0.20 cm

$$u = -(x_2 - x_1)$$

$$\Delta u = \Delta x_1 + \Delta x_2 = 0.4 \, cm$$
; $\Delta v = 0.4 \, cm$

$$u = -30 \, cm; v = +60 \, cm$$

$$f = \frac{uv}{u - v} = \frac{-30 \times 60}{-30 - 60} = 20 \, cm;$$
 $\frac{1}{f} = \frac{1}{v} - \frac{1}{u} (lens \, formula)$

$$-\frac{df}{f^2} = -\frac{dv}{v^2} + \frac{du}{u^2}; \qquad \frac{\Delta f}{f^2} = \frac{\Delta v}{v^2} + \frac{\Delta u}{u^2}$$

$$\frac{\Delta f}{f} \times 100 = f \times 100 \left[\frac{\Delta v}{v^2} + \frac{\Delta u}{u^2} \right] = 20 \times 100 \left[\frac{0.4}{60 \times 60} + \frac{0.4}{30 \times 30} \right] = 20 \times 100 \times 0.4 \left[\frac{1+4}{3600} \right] = 1.11$$

15.(C)
$$W_{gas} = nR\Delta T$$
 (isobaric) $= 2 \times \frac{25}{3} \times 60 = 1000J$
 $\Delta U = \frac{f}{2} nR\Delta T = \frac{3}{2} \times 2 \times \frac{25}{3} \times 60 = 1500J$; $Q = w + \Delta U = 2500J$

Also, from work kinetic energy theorem on piston Work done by gravity = Work done by gas = 1000 J

16.(D) Piston is fixed (isochoric);
$$W_{gas} = 0$$
; $\Delta U_g = \frac{f}{2} nR\Delta T = \frac{3}{2} \times 2 \times \frac{25}{3} \times 60 = 1500J$

$$Q = W + \Delta U$$
; $Wg = mgh = 0$

17.(C) Case I

$$M = \frac{m}{2}, L = 2l_0, \mu = \frac{\mu_0}{4}; \qquad f_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}} = \frac{1}{2(2l_0)} \sqrt{\frac{mg}{2 \times \frac{\mu_0}{4}}} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

$$M = 2m, L = 2l_0, \mu = \frac{\mu_0}{2};$$
 $f_2 = \frac{1}{2L}\sqrt{\frac{T}{\mu}} = \frac{1}{2(2l_0)}\sqrt{\frac{2mg}{\frac{\mu_0}{2}}} = \frac{2}{2} = 1$

Case III

$$M = \frac{m}{4}, L = 3l_0, \mu = \frac{\mu_0}{4};$$
 $f_3 = \frac{1}{2L}\sqrt{\frac{T}{\mu}} = \frac{1}{2(3l_0)}\sqrt{\frac{mg}{4 \times \frac{\mu_0}{4}}} = \frac{1}{3}$

Case IV

$$M = \frac{m}{8}, L = 4l_0, \mu = \frac{\mu_0}{32};$$
 $f_4 = \frac{1}{2L}\sqrt{\frac{T}{\mu}} = \frac{1}{2(4l_0)}\sqrt{\frac{mg}{8 \times \frac{\mu_0}{32}}} = \frac{2}{4} = \frac{1}{2}$

18.(B) Case I

$$M = \frac{m}{2}, L = 2l_0, \mu = \frac{\mu_0}{4}; \qquad f_1 = \frac{1}{2L} \sqrt{\frac{T}{\mu}} = \frac{1}{2(2l)} \sqrt{\frac{mg}{2 \times \frac{\mu_0}{4}}} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

Case II

$$M = 2m, L = 2l_0, \mu = \frac{\mu_0}{2}$$

$$2^{\text{nd}}$$
 harmonic; $f_2 = \frac{2}{2L} \sqrt{\frac{T}{\mu}} = \frac{2}{2(2l_0)} \sqrt{\frac{2mg}{\mu_0/2}} = 2$

Case -III

$$M = \frac{m}{4}, L = 3l_0, \mu = \frac{\mu_0}{4};$$
 3rd harmonic frequency

$$f_3 = \frac{3}{2L} \sqrt{\frac{T}{\mu}} = \frac{3}{2(3l_0)} \sqrt{\frac{Mg}{4 \times \frac{\mu_0}{4}}} = 1$$

Case IV

$$M = \frac{m}{8}, L = 4l_0, \mu = \frac{\mu_0}{32}$$

$$f_4 = \frac{6}{2L} \sqrt{\frac{T}{\mu}} = \frac{6}{2(4l_0)} \sqrt{\frac{mg}{8 \times \frac{\mu_0}{32}}} = 3$$

Vidyamandir Classes: Innovating For Your Success

CHEMISTRY

19.(AD)(A)
$$\operatorname{Na_2SO_3} + S \xrightarrow{\text{boiling} \atop OH^- \text{ or } H_2O} \operatorname{Na_2S_2O_3}$$

(B) $S_2O_3^{2-}$ formed in presence of acid precipitates sulphur and liberates SO_2 gas according to the following reaction.

$$S_2O_3^{2-} + H^+ \longrightarrow S \downarrow (white) + SO_2 \uparrow + H_2O$$
disproportionation

(C)
$$2\text{Ca}_3(\text{PO}_4)_2 + 6\text{SiO}_2 + 10\text{C} \xrightarrow{1400-1500^{\circ}\text{C}} 6\text{CaSiO}_3 + 10\text{CO} + \text{P}_4$$

(D)
$$4AgNO_3 + 2H_2O + H_3PO_2 \longrightarrow 4Ag + 4HNO_3 + H_3PO_4$$

20.(ABD) As bottle 2 + bottle 3 gives colourless and odourless gas, it may be carbon dioxide. Generally carbonates are decomposed by acids giving CO₂ gas. It suggests that bottle 2 and 3 contain sodium carbonate and HCl. Bottle 3 + 4 gives blue precipitate which confirms the Cu²⁺ in either of bottles. CuSO₄, CuCl₂ and Cu(NO₃)₂ are soluble and CuCO₃ is insoluble in water as evident from the reaction.

 $Cu^{2+} + CO_3^{2-} \rightarrow CuCO_3 \downarrow \text{(blue)}$. Thus blue precipitate must be of copper carbonate.

Hence, bottle 4 is $CuSO_4$, 3 is Na_2CO_3 , 2 is HCl (from above) and 1 is $Pb(NO_3)_2$ as it gives white precipitate of $PbCl_2$ with bottle (2).

Bottle 4 is CuSO₄ and that gives deep blue colouration with excess of ammonia solution.

$$Cu^{2+}(aq)+4NH_3(aq)\rightarrow \left[Cu(NH_3)_4\right]^{2+}$$
 (deep blue colour) (aq.)

21.(AD) (I) Pyrolysis of esters, syn 1, 2 Elimination

H.
$$C_2H_5$$
HO CH C_2H_5
 C

(II) Hoffmann elimination of quaternary ammonium hydroxide

22.(BCD)

Cl
$$NO_2$$
 NO_2 NO_2

23.(ACD) P and Q are Na₂CrO₄, H₂SO₄

X and Y are Carbon and Aluminium

 Fe_2O_3 gets precipitated as $Fe(OH)_3$ on dissolving in H_2O

24.(BD) (B) Probability of finding electron between distance r and

$$r + dr = \Psi^2.4\pi r^2 dr = \left(\frac{Z^3}{\pi a_0^3}\right) \! \left(4\pi r^2\right) \! e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \! \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \! \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) \left(4\pi r^2\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) e^{-2Z/a_0} dr \; \; \text{For maximum} \; \; f\left(r\right) = \left(\frac{Z^3}{\pi a_0^3}\right) e^{-2Z/a_0} dr \; \; \text{For maxi$$

must be maximum.

Setting
$$\frac{df(r)}{dr} = 0 \Rightarrow 2r = r^2 \left(\frac{2Z}{a_0}\right) \Rightarrow r = \frac{a_0}{Z}$$
; $(a_0 = 52.9 \text{ pm})$

For He⁺ion = $\frac{52.9}{2}$ = 26.45 pm is the most probable distance of electron in He⁺ ion.

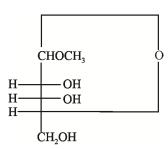
(C)
$$\Psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/a_0} = 0$$
At radial node,
$$\Psi_{2s} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/a_0} = 0$$

$$\left(2 - \frac{r}{a_0}\right) = 0 \Rightarrow r = 2a_0$$

(D) No. of spherical nodes = n - l - 1;

25.(BD)

(B)



The number of moles of HlO_4 required to break down the above molecule is 1

(C)

The compound is sucrose which on hydrolysis gives equimolecular mixture of glucose and fructose.

(D) Polyester is formed by condensation of diacids with diols.

26.(ABD)

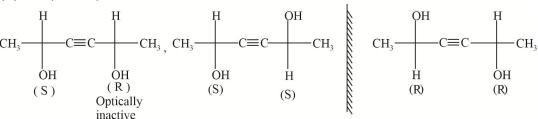
(more erich ring is oxidised)

27.(8)
$$(A) = 3$$

(B) = 2 (optically active-2; optically inactive-1)

(C) = 1 (optically active -2; optically inactive -1)

(D) = 2 (racemic)



Enantiomers optically active

Total stereoisomers -3

Optically active-2

Optically inactive-1

$$CH_{3} \xrightarrow{H} C \equiv C \xrightarrow{H} CH_{3} \xrightarrow{Lindlar} CH_{3} \xrightarrow{H} C = C \xrightarrow{H} CH_{3}$$

$$OH \qquad OH \qquad OH \qquad H \qquad OH$$

$$(S) \qquad (R) \qquad (S) \qquad (R)$$

$$CH_{3} \xrightarrow{OH} C \equiv C \xrightarrow{H} CH_{3} \xrightarrow{Lindlar} CH_{3} \xrightarrow{OH} CH_{3} \xrightarrow{H} C = C \xrightarrow{H} CH_{3} \text{ Active}$$

$$H \qquad OH \qquad H \qquad H \qquad H \qquad OH \qquad (R) \qquad (R) \qquad (R)$$

Total stereoisomer -3 optically active-2 optically inactive-1

$$CH_{3} \xrightarrow{H} C \equiv C \xrightarrow{H} CH_{3} \xrightarrow{\text{Na/liq.NH}_{3}} CH_{3} \xrightarrow{H} C \equiv C \xrightarrow{H} CH_{3} \xrightarrow{\text{Na/liq.NH}_{3}} CH_{3} \xrightarrow{\text{OH } OH \ CH_{3}} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_{3} CH_$$

$$CH_{3} \xrightarrow{H} C \equiv C \xrightarrow{OH} CH_{3} \xrightarrow{Na/liq.NH_{3}} CH_{3} \xrightarrow{H} C = C \xrightarrow{OH} OH \xrightarrow{H} CH_{4}$$

$$(S) \qquad (S) \qquad (S) \qquad (S)$$

$$CH_{3} \xrightarrow{OH} C \equiv C \xrightarrow{H} CH_{3} \xrightarrow{Na/liq.NH_{3}} CH_{3} \xrightarrow{H} C = C \xrightarrow{OH} H$$

$$(R) \qquad (R) \qquad (R) \qquad (R) \qquad (R)$$

Both R, R and S, S on reduction will give one stereoisomer optically active.

Total-3(optically active-2, optically inactive-1)

$$CH_{3} \xrightarrow{H} C = C \xrightarrow{H} CI_{3} \xrightarrow{1. \text{ PhCOOOH}} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{H} \xrightarrow{OH} HO \xrightarrow{H} HO \xrightarrow{H} HO \xrightarrow{H} HO \xrightarrow{CH_{3}} HO \xrightarrow{H} HO \xrightarrow{$$

$$\begin{array}{c} X = 7 \\ Y = 2 \\ \hline \\ Ph - CH - C - CH_2 \\ \hline \\ CH_3 - CH_2 \\ \hline \\ CH_3 - CH_3 \\ \hline \\ CH_3 - CH_3 \\ \hline \\ CH_3 - CH_2 \\ \hline \\ CH_3 - CH_3 \\ \hline \\ CH_3 - CH_3 \\ \hline \\ CH_3 - CH_2 \\ \hline \\ CH_3 - CH_3 \\$$

29.(61.25)
$$5H_2SO_4 + 8NaI \longrightarrow 4Na_2SO_4 + 4I_2 + H_2S + 4H_2O$$

n-factor of $H_2SO_4 = \frac{8}{5}$
Eq. wt = $\frac{\text{mol.wt}}{n} = \frac{98 \times 5}{8} \Rightarrow 61.25$

30.(36)

$$X = 6$$

Complex ion is $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_5 \text{SCN} \right]^{2+}$; it has coordination number six.

$$Y = 1$$

The O.N. of Fe in
$$\left[\stackrel{X}{\text{Fe}} \left(\stackrel{0}{\text{H}_2} O \right)_5^{+1} \stackrel{1}{\text{N}} O \right]^{2+} SO_4^{2-} \text{ is } x + 0 + 1 = +2 \text{ or } x = +1 \right]$$

$$Z = 6$$

$$\left[Mn\left(CN\right)_{6}\right]^{4-}-3d^{5},d^{2}sp^{3};+2$$
 oxidation state

$$\left[\text{Ni}\left(\text{NH}_{3}\right)_{6}\right]^{2+}-3\text{d}^{8},\text{sp}^{3}\text{d}^{2};+2 \text{ oxidation state}$$

$$\left[\operatorname{Co}(\operatorname{ox})_{3}\right]^{3-} - 3\operatorname{d}^{6}, \operatorname{d}^{2}\operatorname{sp}^{3}; + 3 \text{ oxidation state}$$

$$\left\lceil Cu \left(NO_2\right)_6 \right\rceil^{4-} - 3d^9, sp^3d^2; + 2 \ \ \text{oxidation state}$$

$$\left[AgF_{4}\right]^{-}-4d^{8},dsp^{2};+3$$
 oxidation state

$$\left[\text{Ni}(\text{CN})_4 \right]^{2^-} - 3d^8, d\text{sp}^2; +2 \text{ oxidation state}$$

$$\left[PdCl_{4}\right]^{2-}-4d^{8},dsp^{2};+2 \text{ oxidation state}$$

$$\left[Pd(CN)_4 \right]^{2^-} - 4d^8, dsp^2; +2$$
 oxidation state

$$\left[\text{Co(SCN)}_4 \right]^{2^-} - 3\text{d}^7, \text{sp}^3; +2 \text{ oxidation state}$$

31.(120)
$$A(g) \rightarrow \frac{2}{3}B(g) + \frac{2}{3}C(g)$$

$$t = 0$$
 P_0

$$t = 20 P_0 - x \frac{2x}{3} \frac{2x}{3}$$

$$t = \infty \qquad \frac{2P_0}{3} \qquad \frac{2P_0}{3}$$

$$\frac{4P_0}{3} = 4$$
; $P_0 = 3$ atm

$$P_0 + \frac{x}{3} = 3.5$$
 ; $x = 1.5$

for first order kinetics

$$\Rightarrow \ln \frac{P_0}{P_0 - x} = kt$$
 $\Rightarrow \frac{\ln 2}{k} = 20$

 $t_{50\%} = 20$ is the half life

$$t_{75\%} = 2 \times 20 = 40 \,\text{min}$$

$$t_{87.5\%} = 3 \times t_{50\%} = 3 \times 20 = 60 \, \text{min}$$

32.(32) I. 40 g, O combines with 60 g metal

8 g O combines with 12 g metal

$$X = 12$$

II. 29.2% (w/w) HCl has density = 1.25 g/ml

Now, mole of HCl required in 0.4 M HCl (500 ml)

$$= (0.4 \times 0.5)$$
 mole $= 0.2$ mole

If V ml of original HCl solution is taken, then

mass of solution $= 1.25 \,\mathrm{V}$

Mass of HCl =
$$(1.25V \times 0.292)$$
; Mole of HCl = $\frac{1.25V \times 0.292}{36.5} = 0.2$

So,
$$V = \frac{36.5 \times 0.2}{0.292 \times 1.25} \text{mol} = 20 \text{ mL}$$

33.(B)

34.(C)
$$(I \rightarrow R,S); (II \rightarrow P,S); (III \rightarrow Q,R,S); (IV \rightarrow P,Q,S,T)$$

(A)
$$6 \rightarrow 3$$
 $\Delta n = 3$

$$\Delta n = 3$$

No. of lines =
$$\frac{3(3+1)}{2}$$
 = 6

All lines are in infrared region

(B)
$$7 \rightarrow 3$$
 $\Delta n = 4$

No. of lines
$$=\frac{4(4+1)}{2}=10$$

All lines are in infrared region

(C)
$$5 \rightarrow 2$$
 $\Delta n = 3$

Lines are in visible region and also in infrared region

(D)
$$5 \rightarrow 1$$
 Number of lines $= \frac{5 \times 4}{2} = 10$

Lines are in visible region, in infrared region and also in U.V. region.

35.(A)

36.(B)
$$(I) \rightarrow q, r, s; (II) \rightarrow p, q; (III) \rightarrow p, q; (IV) \rightarrow p, t$$

D. is meta directing due to -m effect of -COCH₃ group

MATHEMATICS

37.(ACD)
$$Y = \int_{0}^{1} \frac{2x^{2} + 3x + 3}{(x+1)(x^{2} + 2x + 2)} \text{ By partial fraction decomposition}$$

$$= \int_{0}^{1} \left(\frac{2}{(x+1)} - \frac{1}{(x^{2} + 2x + 2)} \right) dx = \int_{0}^{1} \left(\frac{2}{(x+1)} - \frac{1}{(x+1)^{2} + 1} \right) dx$$

$$= 2 \ln(x+1) - \arctan(x+1) \Big|_{0}^{1}$$

$$= 2 \ln 2 - \arctan 2 + \frac{\pi}{4} \dots (A)$$
From (A)
$$Y = 2 \ln 2 + \frac{\pi}{4} - \arctan 2 = 2 \ln 2 + \arctan\left(\frac{1-2}{1+2}\right) = 2 \ln 2 - \arccos 3 \dots (C)$$
From (A)
$$Y = 2 \ln 2 + \frac{\pi}{4} - \arctan 2 = -\frac{\pi}{4} + \ln 4 + \frac{\pi}{2} - \arctan 2 = -\frac{\pi}{4} + 2 \ln 2 + \operatorname{arccot} 2 \dots (D)$$

38.(BD) Shift LHS integral to RHS to get

$$\int_{2}^{150} \left(f^{2}(x) - (x-1)\ln(x-1) (2f(x) - (x-1)\ln(x-1)) \right) dx = 0$$

$$\Rightarrow \int_{2}^{150} \left(f^{2}(x) - 2f(x)(x-1)\ln(x-1) + ((x-1)\ln(x-1))^{2} \right) dx = 0$$

$$\Rightarrow \int_{2}^{150} \left(f(x) - (x-1)\ln(x-1) \right)^{2} dx = 0$$
But, $\left(f(x) - (x-1)\ln(x-1) \right)^{2} \ge 0$
So, $\left(f(x) - (x-1)\ln(x-1) \right)^{2} = 0$

$$f(x) - (x-1)\ln(x-1) = 0$$

$$f(x) = (x-1)\ln(x-1)$$

(A) is incorrect because area is equal to ¼ and check other options.

39.(ABD)
$$m_1^2 = \frac{2b^2 + 2c^2 - a^2}{4}$$
; $m_2^2 = \frac{2c^2 + 2a^2 - b^2}{4}$; $m_3^2 = \frac{2a^2 + 2b^2 - c^2}{4}$;
$$\begin{bmatrix} m_1^2 \\ m_2^2 \\ m_3^2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} a^2 \\ b^2 \\ c^2 \end{bmatrix}; \qquad \begin{bmatrix} m_1^2 \\ m_2^2 \\ m_3^2 \end{bmatrix} = \frac{A}{4} \begin{bmatrix} a^2 \\ b^2 \\ c^2 \end{bmatrix} \Rightarrow 4A^{-1} \begin{bmatrix} m_1^2 \\ m_2^2 \\ m_3^2 \end{bmatrix} = \begin{bmatrix} a^2 \\ b^2 \\ c^2 \end{bmatrix}$$
$$\begin{bmatrix} a^2 \\ b^2 \\ c^2 \end{bmatrix} = \frac{4}{9} \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} m_1^2 \\ m_2^2 \\ m_3^2 \end{bmatrix}; \qquad M = \frac{4}{9} \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$$

Now, verify.

40.(ABD) Let
$$f(x) = ax^3 + bx^2 + cx + d$$

$$\lim_{x \to 0} (1 + f(x))^{\frac{1}{x}} = e^{-1} \Rightarrow c = -1 \text{ and } d = 0$$

$$x^3 f\left(\frac{1}{x}\right) = x^3 \left(\frac{a}{x^3} + \frac{b}{x^2} + \frac{c}{x} + d\right) = a + bx + cx^2 + dx^3$$

$$\lim_{x \to 0} \left(x^3 f\left(\frac{1}{x}\right)\right)^{1/x} = e^2 \Rightarrow \lim_{x \to 0} \left(a + bx + cx^2 + dx^3\right)^{1/x} = e^2$$

$$a = 1 \text{ and } b = 2$$

$$f(x) = x^3 + 2x^2 - x$$

41.(ABD)
$$f(x) = a(x-1)^2 - 2$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left[a(x-1)^2 - 2 \right] = 3$$

$$a - 2 = 3 \Rightarrow a = 5$$

$$g: [1, \infty) \to [-2, \infty)$$

$$g(x) = 5(x-1)^2 - 2$$
A. $g'(x) = 10(x-1) \Rightarrow g'(1) = 0$
B. Domain of $g(g(x))$

$$g(x) \ge 1 \Rightarrow 5(x-1)^2 - 2 \ge 1$$

$$x \ge 1 + \sqrt{\frac{3}{5}}$$

$$\therefore x \in \left[1 + \sqrt{\frac{3}{5}}, \infty\right] = \left[1 + \sqrt{\frac{p}{q}}, \infty\right]$$

$$q - p = 2$$

(C)
$$g(x) = g^{-1}(x) = x$$

 $5(x^2 - 2x + 1) - 2 = x \Rightarrow 5x^2 - 11x + 3 = 0$

$$x = \frac{11 \pm \sqrt{121 - 60}}{10}$$

$$x = \frac{11 \pm \sqrt{61}}{10} \nearrow \frac{11 + \sqrt{61}}{10} (only one solution)$$

$$\searrow \frac{11 - \sqrt{61}}{10} (rejected)$$

(D)
$$\frac{d}{dx} \left[90 \left(g^{-1} \left(x \right) \right) \right] |_{x=43} = \frac{90}{g'(4)} = \frac{90}{10(3)} = 3$$

$$g(x) = 43 \Rightarrow 5(x-1)^2 - 2 = 43 \Rightarrow x - 1 = 3 \Rightarrow x = 4$$

2.(ACD)
$$f(x) = \lim_{n \to \infty} (-n) \left(\left| 2 \tan^{-1} x - \frac{1}{n} \right| - 2 \left| \tan^{-1} x \right| \right)$$

$$= \lim_{n \to \infty} \frac{(-n) \left(\left| 2 \tan^{-1} x - \frac{1}{n} \right| - 2 \left| \tan^{-1} x \right| \right)}{\left| 2 \tan^{-1} x - \frac{1}{n} \right| + 2 \left| \tan^{-1} x \right|}$$

$$= \lim_{n \to \infty} \frac{(-n) \left(\frac{-4 \tan^{-1} x}{n} + \frac{1}{n^2} \right)}{\left| 2 \tan^{-1} x - \frac{1}{n} \right| + 2 \left| \tan^{-1} x \right|} = \frac{4 \tan^{-1} x}{\left| 4 \tan^{-1} x \right|} = \frac{\tan^{-1} x}{\left| \tan^{-1} x \right|}, x \neq 0$$

$$f(x) = \begin{cases} \frac{\tan^{-1} x}{\left| \tan^{-1} x \right|}, x \neq 0 \\ -1, & x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{\tan^{-1} x}{\left| \tan^{-1} x \right|}, x \neq 0 \\ -1, & x = 0 \end{cases}$$

- (A) f(x) is discontinuous at x = 0
- (B) |f(x)| is a continuous functions.

(C)
$$f(1) + f(2) = 2$$

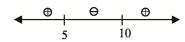
(D)
$$f(x) = \left| x + \frac{5}{\lambda} \right|$$

For the existence of the solution of the equation $\frac{5}{\lambda} < 1 \Rightarrow \lambda > 5$

43.(ABCD)

 $\lim_{x \to \infty} \cot^{-1} x = 0 \text{ and } \lim_{x \to -\infty} \cot^{-1} x = \pi$

And
$$(x-5)(x-10)$$



44.(AB)
$$\frac{d}{dx}(P(x)) + (x-1)^3 - (P(x)+1) \ge 0$$

 $e^{-x}\left(\frac{d}{dx}(P(x)) - P(x) + x^3 - 3x^2 + 3x - 2\right) \ge 0$
 $\left(\frac{d}{dx}(P(x)e^{-x}) - \frac{d}{dx}e^{-x}x^3 - 3\frac{d}{dx}xe^{-x} - \frac{d}{dx}e^{-x}\right) \ge 0$

$$\frac{d}{dx} \left(P(x) - \left(x^3 + 3x + 1 \right) e^{-x} \right) \ge 0$$
Let $g(x) = \left(P(x) - \left(x^3 + 3x + 1 \right) \right) e^{-x}$ is increasing
$$g(x) \ge g(0) \Rightarrow \left(P(x) - \left(x^3 + 3x + 1 \right) \right) e^{-x} \ge 0 \ \forall x \ge 0$$
But $P(x) \le x^3 + 3x + 1 \ \forall \ x \ge 0$

$$P(x) = x^3 + 3x + 1 \ \forall \ x \ge 0$$

45. (1.57)
$$\sum_{\omega=1}^{\infty} \sin^{-1} \left[\frac{2\omega + 1}{\omega(\omega + 1)\left(\sqrt{\omega^{2} + 2\omega} + \sqrt{\omega^{2} - 1}\right)} \right] = \sum \sin^{-1} \left[\frac{(2\omega + 1)\left(\sqrt{\omega^{2} + 2\omega} - \sqrt{\omega^{2} - 1}\right)}{\omega(\omega + 1)(2\omega + 1)} \right]$$

$$= \sum \sin^{-1} \left[\frac{\left(\sqrt{(\omega + 1)^{2} - 1} - \sqrt{\omega^{2} - 1}\right)}{\omega(\omega + 1)} \right]$$

$$\sum_{\omega=1}^{\infty} \sin^{-1} \left[\frac{1}{\omega} \sqrt{1 - \frac{1}{(\omega + 1)^{2}}} - \frac{1}{\omega + 1} \sqrt{1 - \frac{1}{\omega^{2}}} \right]; \qquad \sum_{\omega=1}^{\infty} \left(\sin^{-1} \frac{1}{\omega} - \sin^{-1} \frac{1}{\omega + 1} \right)$$

$$S_{n} = \sin^{-1} 1 - \sin^{-1} \frac{1}{2} + \sin^{-1} \frac{1}{2} - \sin^{-1} \frac{1}{3} + \dots + \sin^{-1} \frac{1}{n} - \sin^{-1} \frac{1}{n + 1}$$

$$S_{n} = \sin^{-1} 1 - \sin^{-1} \frac{1}{n + 1}; S_{\infty} = \frac{\pi}{2}$$

46.(30) Rewrite the integral as

$$I_2 = \int_0^1 \left(\frac{x}{5+x}\right)^{7/2} \left(\frac{1-x}{5+x}\right)^{9/2} \frac{dx}{\left(5+x\right)^2}$$

And do the substitution $\frac{x}{5+x} = t$, so that $\frac{dx}{(5+x)^2} = \frac{dt}{5}$ and the integral becomes

 $\frac{1}{\left(5\right)^{11/2}}\int_{0}^{1/6} \left(t\right)^{7/2} \left(1-6t\right)^{9/2} dt$ and now from here do the substitution 6t = u and we simply obtain

$$I_2 = \frac{1}{5^{9/2} \times 6^{7/2}} I_1$$
 and we conclude $a = 30$.

$$47.(3) \left[\vec{a} \ \vec{b} \ \vec{c} \right] = 30$$

 $|abc\sin\theta\cos\phi| = 30 \Rightarrow \theta = \frac{\pi}{2}, \phi = 0 \Rightarrow \vec{a}, \vec{b}, \vec{c}$ -are mutually perpendicular

$$(2\vec{a} + \vec{b} + \vec{c}) \cdot \left[(\vec{a} \times \vec{c}) \times (\vec{a} - \vec{c}) + \vec{b} \right] = (2\vec{a} + \vec{b} + \vec{c}) \cdot \left[(\vec{a} \cdot \vec{a}) \vec{c} + c^2 \cdot \vec{a} + \vec{b} \right]$$

$$= 2a^2c^2 + b^2 + a^2c^2 = 3a^2c^2 + b^2 = 300 + 9 = 309$$

$$\therefore \frac{k}{103} = \frac{309}{103} = 3$$

48.(25) A: Mr. A reaches late

 B_1 : A goes to school by walking

 B_2 : A takes bus to school

E: A will be on time for atleast one out of 2 consecutive days.

$$P(B_1) = \frac{3}{4}$$
; $P(B_2) = \frac{1}{4}$; $P(A/B_1) = \frac{1}{3}$

$$P(A/B_2) = \frac{2}{3}$$

$$P(A) = P(B_1 \cap A) + P(B_2 \cap A) = \frac{3}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3} = \frac{5}{12}$$

$$P(E) = 1 - P(A \cap A) = 1 - \frac{5}{12} \times \frac{5}{12} = \frac{119}{144} = \frac{p}{q}$$

$$q - p = 144 - 119 = 25$$

49.(190)
$$B^2 = I$$

$$AB = \begin{bmatrix} a & x & p \\ y & q & b \\ r & c & z \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} p & x & a \\ b & q & y \\ z & c & r \end{bmatrix}$$

$$AB = AB^3 = \dots = AB^{19} = \begin{bmatrix} p & x & a \\ b & q & y \\ z & c & r \end{bmatrix}$$

tr.
$$(AB + AB^3 + \dots + AB^{19}) = 210$$

$$10(p+q+r) = 210 \Rightarrow p+q+r = 21, p,q,r \in N$$

$$p'+q'+r'=18, p',q',r' \in W$$

Number of ordered triplets $(p,q,r) = {}^{20}C_2 = \frac{20 \times 19}{2} = 190$

50. (41) Let
$$P(E_1) = a, P(E_2) = b$$
 and $P(E_3) = c$

$$3a(1-b)(1-c) = (1-a)b(1-c) = 9(1-a)(1-b)c = 3(1-a)(1-b)(1-c)$$

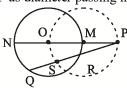
$$\frac{3a}{1-a} = \frac{b}{1-b} = \frac{9c}{1-c} = 3 \Rightarrow a = \frac{1}{2}, b = \frac{3}{4}, c = \frac{1}{4}$$

Now,
$$\begin{vmatrix} 1/2 & 3/4 & 1/4 \\ 3/4 & 1/4 & 1/2 \\ 1/4 & 1/2 & 3/4 \end{vmatrix} = \frac{1}{64} \begin{vmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} = \frac{-9}{32}; \qquad \qquad \frac{a}{b} = \frac{9}{32} \Rightarrow a+b=41$$

51.(C)

52.(B)

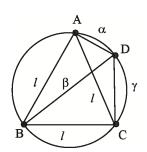
I. Locus of S is a part of circle with OP as diameter passing inside the circle C.



II.(D)
$$(PR)(PQ) = (NP)(MP) = (d+r)(d-r) = d^2 - r^2$$

$$= (PS - SR)(PS + SQ) = PS^2 - SQ^2$$

$$= (PS)^2 - (SQ)(SR)$$
III.(A) Using Ptolemy's theorem



III.(A) Using Ptolemy's theorem
$$(BD)(AC) = (AB)(CD) + (BC)(AD)$$

$$\beta l = l\gamma + \alpha l \Rightarrow \beta = \gamma + \alpha$$

53.(D)

54.(B)

I.
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 2 \Rightarrow \alpha = \beta$$

$$D = 0 \Rightarrow 64 - 4(k^2 - 6k) = 0$$

$$k^2 - 6k - 16 = 0 \Rightarrow (k - 8)(k + 2) = 0$$

II.
$$(k-2)(3k+8) < 0$$

 $-\frac{8}{3} < k < 2$

III.
$$|\alpha - \beta| < \sqrt{3}$$

 $\frac{\sqrt{4k^2 - 16}}{4} < \sqrt{3} \Rightarrow \sqrt{k^2 - 4} < 2\sqrt{3}$
 $0 \le k^2 - 4 < 12$
 $k \in (-\sqrt{12}, -2) \cup (2, \sqrt{12})$

IV.

